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ABSTRACT

In this paper, we present a generic and robust multimodal synthesis system that produces highly
natural speech and facial expression simultaneously. The key component of this system is the Duration
Informed Attention Network (DurlAN), an autoregressive model in which the alignments between the
input text and the output acoustic features are inferred from a duration model. This is different from
the end-to-end attention mechanism used, and accounts for various unavoidable artifacts, in existing
end-to-end speech synthesis systems such as Tacotron. Furthermore, DurlAN can be used to generate
high quality facial expression which can be synchronized with generated speech with/without parallel
speech and face data. To improve the efficiency of speech generation, we also propose a multi-band
parallel generation strategy on top of the WaveRNN model. The proposed Multi-band WaveRNN
effectively reduces the total computational complexity from 9.8 to 3.6 GFLOPS, and is able to
generate audio that is 6 times faster than real time on a single CPU core. We show that DurlAN could
generate highly natural speech that is on par with current state of the art end-to-end systems, while at
the same time avoid word skipping/repeating errors in those systems. Finally, a simple yet effective
approach for fine-grained control of expressiveness of speech and facial expression is introduced.

1 Introduction

Text-to-speech synthesis (TTS) is the task of converting source texts into speech signals that sound like natural
human speech. The quality of speech synthesis systems is evaluated based on multiple factors including naturalness,
robustness, and accuracy of generated speech. For many real-world speech synthesis tasks, generation time, latency,
and computational costs are also important factors to consider. Recently, there is increasing demand for generating
multimodal signals which requires the generated speech and facial expression being both natural and synchronized.
Combined with facial modeling techniques, the multimodal synthesis techniques make it possible to achieve the goal of
natural face-to-face communication in many human-computer interaction scenarios such as virtual worlds, computer
games, online education and so on.

Traditional speech synthesis approaches, including concatenative methods [1, 2] and statistic parametric systems
[3, 14,151, are all based on acoustic feature analysis and synthesis. These approaches are still predominantly used in
industrial applications due to their advantages in robustness and efficiency. However, these approaches suffer from the
inferior naturalness of generated speech. End-to-end approaches [6} (7} 18l 9} [10, [11]] have gained much attention recently
due to the clearly better naturalness of their synthesized results and the simplified training pipelines. Unfortunately,
the existing end-to-end systems are lack of robustness when generating speech as they produce unpredictable artifacts
where random words in the source text are repeated or skipped in generated speech [7, [L1] esp. when synthesizing
out-of-domain texts. For multimodal synthesis tasks, synchronization between speech and facial expression is another
challenge for end-to-end based systems. While speech and face features can be generated as a pair with end-to-end
models, this approach requires large amount of paired speech and facial expression data for training. Such paired speech
and facial expression data is expensive to collect and cannot be obtained in scenarios when the desired voice and virtual
image come from different sources.

In this paper, we propose duration informed attention network (DurlAN), a generic multimodal synthesis framework that
generates highly natural and robust speech and facial expressio DurlAN is a combination of traditional parametric

'Sound and video demo can be found at https://tencent-ailab.github.io/durian/
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Figure 1: Model architecture of DurlAN. The model takes a sequence of symbols, including phonemes and prosodic
boundaries between them, and outputs the corresponding mel-spectrogram and facial expression control parameters.

systems and recent end-to-end systems, and can achieve both naturalness and robustness in speech generation. The
recent end-to-end systems advance over the traditional parametric systems in multiple perspectives, including the use
of an encoder to replace the manually-designed linguistic features, an autoregressive model to address the prediction
oversmoothing problem, a neural vocoder to replace the traditional source-filter vocoder, and an attention mechanism
for end-to-end training and optimization. Our observation and analysis indicates that the speech generation instability in
existing end-to-end systems is caused by the end-to-end attention mechanism. Therefore, the core idea behind DurTAN
is to replace the end-to-end attention mechanism with an alignment model similar to the one in parametric systems,
while preserving other advancements in existing end-to-end systems El Moreover, the alignment model includes a
duration prediction model which can be used for driving facial expression generation without relying on parallel speech
and face data.

The main contributions of this paper are as follows:

1. We propose to replace the end-to-end attention mechanism in the Tacotron 2 [[7] system with the alignment
model in traditional parametric systems. We empirically show that the proposed method could generate highly
natural speech that is on par with that generated using Tacotron 2, while at the same time DurlAN generated
speech is much more robust and stable.

2. We use a skip encoder structure to encode both the phoneme sequence representation and the hierarchical
prosodic structures in Chinese prosody for improved generalization of the DurlAN system on out-of-domain
texts in Chinese speech synthesis tasks.

3. We propose a simple yet effective fine-grained style-control approach under the supervised setup without
fine-grained labels during training as an extension to the conventional multi-style training.

4. We describe a multi-band synchronized parallel WaveRNN algorithm to reduce the computational cost in the
original WaveRNN model [14] and speedup the inference process on single CPU.

2 At the time of preparing this paper, we became aware of a preprint paper [12] where a similar idea was proposed to address the
robustness issues related to the end-to-end systems. Our work is independently developed as indicated by the patent [13]] filed before
their preprint paper and the fact that many design choices are completely different.
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2 DurIAN

In this section, we describe the main components in the DurlAN multimodal synthesis system. As DurlAN is a text
driven system, it takes a sequence of symbols converted from text and outputs mel-spectrogram or facial modeling
parameters.

The architecture of DurlAN is illustrated in Figure. [T} It includes (1) a skip encoder that encodes both phoneme
sequences and prosodic structures, (2) an alignment model that aligns the input phoneme sequence and the target
acoustic frames at frame level, (3) an autoregressive decoder network that generates target acoustic or facial modeling
features frame by frame, (4) a post-net [[7] that predicts the residuals not captured by the decoder network.

The skip encoder takes a sequence of symbols x;.x as input and outputs a sequence of hidden states h;.n- as
hy.nv = skip_encoder(x1.n), (1)

where N is the length of the input sequence which contains both the phoneme sequence and the prosodic boundaries
between them, and N’ is the length of the input phoneme sequence without prosodic boundaries. The length N of
hidden states output from the skip encoder is different from the length N of the input sequence because the hidden
states associated with the prosodic boundaries are excluded from the final output of the skip encoder (see Sec. [2.1). The
sequence of hidden states generated from the skip encoder will be expanded according to the duration of each phoneme
dy.nv in the alignment model to generate frame aligned hidden states e;.T as

er.7 = state_expand(hy.n/, d1.n7), 2)

where T equals to the total number of acoustic frames. The state expansion here is basically the replication of hidden
states sequentially according to the duration of the given phoneme sequence. During training, the duration of each
phoneme is obtained through forced alignment given the input phoneme sequence and the target acoustic features y.r.
At the synthesis stage, we exploit the duration of phonemes predicted from the duration model. The expanded hidden
states from the alignment model can be exactly paired with the target acoustic frames for training the decoder network
to predict each acoustic frame autogressively as

yi.1 = decoder(ey.), 3)

where y/ .1 is the predicted acoustic features from decoder network. The output from the decoder network is passed
through a post-net to predict the residuals ry.7 as

ry;r = post-net(y}.r). S

The entire network is trained to minimize the /1 loss

T T
L= ly=vy[+> ly— (' +71) )
n=1 n=1

between the predicted and reference mel-spectrograms before and after the post-net.

The duration model is separately trained to minimize the £2 loss between the predicted and reference duration obtained
from forced alignment. In the sections below, we will give a detailed description of the skip encoder, alignment model,
and decoder network. As the post-net used in DurlAN is exactly the same as the one in Tacotron 2 [7], we will not give
detailed description.

2.1 Skip Encoder

The main objective of the skip encoder is to encode the representation of phoneme sequences as well as hierarchical
prosody structure in the hidden states. The prosodic structure is an important component for improved generalization of
speech synthesis system on out-of-domain text in Chinese speech synthesis tasks.

To generate the input to the skip encoder, the source text is first converted to a sequence of phonemes. To encode
different levels of prosody structures, we insert special symbols representing different levels of prosody boundaries
between input phonemes. Figure. [2]illustrates an example how these special symbols representing prosodic boundaries
are inserted.
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Figure 2: An illustration of how prosodic boundaries are inserted between input phonemes. The symbol #S represents
the boundary of syllables, #1 represents the boundary of prosodic words, #2 represents the boundary of prosodic phrase,
and #3 represents the boundary of intonational phrase.

The main network components in the skip encoder is inherited from the encoder in the Tacotron 1 [6] system. Each
phoneme and inserted prosodic symbol in the input phoneme sequence is first converted to a continuous vector in the
embedding space. The embedded representation of the phoneme sequence is then passed through the pre-net (6] that
contains two fully connected layers followed by the CBHG [6] module. Dropout with probability of 0.5 is applied on
the pre-net during training. The output from the CBHG module is a sequence of hidden states containing the sequential
representation of the input text. Since the alignments between the encoder and decoder states rely on the phone duration
model, and since the prosodic boundaries are physically corresponding to time points instead of duration, the hidden
states associated with prosodic boundaries are excluded from the output of the CBHG model. An alternative approach
for encoding prosodic boundaries is to convert the phoneme sequence into linguistic features where prosodic structures
are encoded. However, our early experiments show that using skip encoder could generate speech that is more natural
than using linguistic features.

2.2 Alignment Model

One important task in speech synthesis is uncovering the hidden alignment between the phoneme sequence and the
target feature/spectrum sequence. End-to-end systems rely on attention based mechanism to discover such alignment.
However, existing end-to-end attention mechanism frequently generates unpredictable artifacts where some words are
skipped or repeated in the generated speech. Since production speech synthesis systems have very low tolerance on such
instability, end-to-end speech synthesis systems have not been widely deployed in practical applications. In DurlAN,
we replace the attention mechanism with an alignment model [[15} [16], in which the alignment between the phoneme
sequence and the target acoustic sequence is inferred from a phoneme duration prediction model. The duration of each
phoneme is measured by the number of aligned acoustic frames. During training, the alignment between the acoustic
frame sequence and the input phoneme sequence can be obtained through forced alignment widely used in speech
recognition. The alignment is then used for hidden state expansion, which simply replicates hidden states according to
phoneme duration. During synthesis, a separate duration model is exploited to predict the duration of each phoneme.
This duration model is trained to minimize the mean squared error between the predicted phoneme duration and the
duration obtained through forced alignment, given the whole sentence. After state expansion, the relative position of
every frame inside each phone is encoded as a value between 0 and 1, and appended to the encoder state. The expanded
encoder states are analogous to the attention context estimated in the end-to-end system, except that in DurlAN they are
inferred from the predicted phone duration.

The duration model used in DurlAN is similar to the ones used in the conventional statistical synthesis models. It
consists of three 512-unit bidirectional LSTM layers. Similar to that in the skip encoder, the states associated with the
prosodic boundaries are also skipped before the final fully connected layer.

2.3 Decoder

The decoder used in DurlAN is similar to the one used in Tacotron 1 [6l]. The only difference is that the attention
context concatenated with the pre-net output is replaced with the encoder states derived from the alignment model
in DurlAN. As in Tacotron, the decoder network can output single frame or multiple non-overlapped frames at each
time step. When the target is multiple non-overlapped frames, a restricted attention is applied to the encoder states
aligned with the target frames, and then concatenated with the output of the pre-net at each time step. The attention
mechanism used in DurlAN is different from that used in the end-to-end systems. In DurlAN, the attention context is
computed from a small number of encoder frames that are aligned with the target frames. As long as the number of
frames per decoder time step is not extraordinary large, it will not cause the similar artifacts observed in the end-to-end
systems. The content-based tanh attention [[17] is used in our system and dropout with a probability of 0.5 is applied to
the pre-net in the decoder network during both training and inference.
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Figure 3: Generation of the style code from style embedding. The style embedding is learned jointly with other
parameters of DurlAN through multi-style training.

2.4 Multimodal Synthesis

The DurlAN is a generic framework that can be used for both speech and facial expression generation. The target for
speech generation is mel-spectrogram and the target for facial expression generation is facial modeling parameters.
The synchronization between the speech and the facial expression can be achieved through two different ways: either
through multi-task learning, or through the duration model. When the multi-task learning based synchronization is used,
the parallel speech and face data is required and the training target is the concatenation of the mel-spectrogram and the
facial modeling parameters. However, when the duration-model based synchronization is used, the parallel speech and
face data is no longer necessary since we can train two separate models independently, one for speech synthesis and one
for facial expression generation, both share the same duration model trained with the speech alignment. In this study,
we use duration based synchronization as it is more flexible and can pair different voice with different faces.

3 Fine-grained Style Control

Fine-grained style control has recently been demonstrated in several unsupervised style disentangling approaches
such as global style token (GST) [18] and unsupervised variational autoencoder (VAE) [19} 20]. As the objective of
unsupervised style disentanglement is to disentangle the representations of speech into latent variables associated with
speech generation, fine-grained control of spoken styles can be achieved by directly manipulating latent variable in
continuous space. However, the challenge of unsupervised style disentanglement in practice is on the interpretation
of the latent variables. As the latent variable is learned in unsupervised manner, it is difficult to uncover the physical
interpretation of each latent variable. Moreover, the generation of speech with certain styles requires appropriate
manipulation of several correlated latent variables simultaneously. For example, if you want to generate speech with a
style of Sports Commentator, both the latent variables related to fundamental frequency, speaking rate, and other factors
have to be controlled simultaneously. Uncovering the correlation between desired speaking styles and latent variables
can be very difficult in the unsupervised framework.

On the other hand, fine-grained style control with supervised style labels has not been intensively investigated. In this
section, we present a simple yet effective fine-grained style control algorithm in DurlAN. Here we assume only discrete
style labels are available during training since fine-grained labels are difficult to obtain. Under this setup, while it is
easy for TTS systems to generate speech in discrete styles indicated by the supervision labels in the training data, it
is unclear how to extend the discrete labels into fine-grained style control during speech generation. In DurlAN, the
fine-grained style control is achieved through the style code, a scaled version of style embedding. Figure. [3illustrates
the process of generating the style code. The presumption behind scaling the learned style embedding is that the
learned style embedding can be considered as a vector in the latent space where the direction can be interpreted as
the attributes of the style and the magnitudes as the intensity of the corresponding style. Therefore, a fine-grained
control of the style can be achieved by changing the magnitude of the learned style embedding without changing its
direction. The style code is inserted in two different places in DurlAN as illustrated in Figure. [I] Since the duration of
each phoneme is correlated with the speaking styles, the style code is exploited in the phoneme duration prediction
model. Specifically, it is concatenated with the embedded representation of phoneme sequences. In addition, the style
code is concatenated with the hidden states after the skip encoder to control the generation of acoustic features. The
control scale for generating style code is set to a constant number of 1.0 during training, but can be any continuous
value during inference to achieve fine-grained style control.
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Figure 4: Model architecture of Multi-band WaveRNN.

4 Multi-band WaveRNN

Neural vocoders [21}, 22 [14, are capable of achieving highly natural speech that significantly surpasses that
generated with the conventional vocoders. However, the major challenge of applying neural vocoders to production
systems is the computational cost during inference. Most neural vocoders are designed to predict audio signals sample
by sample. Therefore even one second of speech/audio requires tens of thousands of inference steps which significantly
slows down the audio generation speed. In this work, we propose a multi-band synchronized parallel generation
approach on top of the WaveRNN model to improve the inference speed of WaveRNN.

4.1 WaveRNN

The WaveRNN model we use follows the structureﬂ in [14]]. A single-layer recurrent network and a dual-softmax layers
is used to generate 16-bit audio. To accelerate WaveRNN inference speed, we performed 8-bit quantization on the
hidden-layer weights of Gated recurrent units (GRU) as well as other four fully connected layers following it. The
quantization significantly reduces the model size, which is very helpful to increase the cache hit rate. Moreover, the
quantized parameters help to accelerate the calculations using the avx2 instruction of the Intel CPU. The combination of
quantization and avx2 instruction could achieve 4x faster inference speed than floating-point calculations. Since direct
quantization of the network causes the deterioration of synthesized sound quality, we use a quantitative loss learning
mechanism during training to minimize the deterioration caused by quantization.

4.2 Multi-band Parallel Strategy

To further improve the audio generation speed, we propose the Multiband-WaveRNN alogorithm which can effectively
reduce the computational cost. While several studies [24] have explored the usage of multi-band strategy for neural
vocoder, these studies aim at modeling audio with higher sampling rate by training separate neural vocoder models for
each subband. They require neural vocoders designed for different subband work in parallel in mulitple CPUs or GPUs.
As a result, the total computational cost is not reduced. In contrast, our proposed multi-band WaveRNN algorithm
exploits the sparseness of the neural network model and uses a single shared WaveRNN model for all subband signal
predictions. More specifically, the shared WaveRNN model takes all subband samples predicted from the previous
step as input and predicts next samples in all subbands in one inference step as illustrated in Figure.[d We modify the

3The baseline WaveRNN model without weight matrix sparsification is used.
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original WaveRNN model to take inputs from multiple subbands and predict samples for all subbands simultanously
through multiple output (and softmax) layers. With the proposed model structure, the audio in each subband can be
downsampled by a factor of N (the number of frequency bands), and thus the total computational cost can be reduced.
The predicted audio signals in each frequency band are upsampled first and then passed to synthesis filters. The signals
from each frequency band after synthesis filter are summed to single audio signal. Downsamping is achieved by taking
every Nth samples, and upsampling is done by padding zeros between original signal. The details of analysis and
synthesis filters are described in Appendix [A]

5 Experiments

The performance of the proposed system is evaluated on three different tasks, including (1) speech synthesis, (2)
fine-grained style control for expressive speech synthesis, and (3) multimodal speech synthesis.

5.1 Speech Synthesis

We evaluated the naturalness and robustness of the proposed system using two different datasets. The first dataset is
based on audio recordings from a professional male speaker. The training data contains a total of 18 hours of speech.
Another dataset is from a professional female speaker and contains 7 hours of speech. Both subjects are native Mandarin
speakers. All the training data has a sampling rate of 16KHz.

Mean Opinion Score (MOS) of the naturalness of generated speech utterances are rated by human subjects participated
in the listening tests. Two independent evaluations were performed using the models trained on male and female
speakers, respectively. We use 40 unseen sentences for evaluating the models trained from the male speaker, and
20 relatively longer out-of-domain sentences for evaluating the models trained from the female speaker. In all the
experiments, 20 native Mandarin speakers participated in the listening test. We compared our model with the traditional
BLSTM-based parametric system [15] and the Tacotron-2 system. As shown in Table. [T, DurlAN and Tacotron 2
perform significantly better than the traditional parametric system. In both tests DurlAN and Tacotron-2 perform on-par
with each other. No statistically significant difference can be observed. These results tell us that the superior naturalness
in Tacotron-2 is likely a result of all other components in Tacotron other than the end-to-end attention mechanism.

Table 1: 5-scale mean opinion score evaluation.

Male Female

Parametric 3.54 3.47
Tacotron 2 4.10 4.28
DurlAN 411 4.26

As the design goal of DurlAN is to achieve the naturalness comparable to Tacotron 2 while avoiding the artifacts
observed in the Tacotron 2 system, We further compared two systems in robustness of generated speech. In this
evaluation, we mainly focused on the word skipping and repeating errors commonly occur in the Tacotron 2 systems.
Both DurlAN and Tacotron 2 systems were used to generate 1000 unseen utterances. The occurrence rate of word
skipping and repeating errors are listed in Table. 2| These results clearly indicate that DurlAN is much more robust than
Tacotron-2 and generated no error in this category.

Table 2: The occurrence rate of word skipping or repeating errors.

skip/repeat
Tacotron 2 [7]] 1%
Deep Voice 3 [[11]] 4%
Tacotron 2 2%
DurlAN 0%

5.2 Multi-band WaveRNN

We evaluated the naturalness of generated speech and the speed of the Multi-band WaveRNN.
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5.2.1 Speed

The main complexity of WaveRNN comes from two GRUs and four fully-connected layers. We ignore the overhead of
additive operations and focus only on the complexity of multiplication operations for each sample generated, which is

C:2*(2*Ng*Ng*3+Ng*NF+256*Ng*NB)*SR/NB, (6)

where N is the size of the two GRUs, Ny is the width of affine layer connected with final fully-connected layer, Ny
is the number of frequency band, and Sy is the sampling rate. Using Ng = 192, Ny = 192 and N = 1 (fullband
WaveRNN) for Sg = 16000, we obtain a total complexity around 9.8 GFLOPS. When we set Ny = 4, the total
complexity is 3.6 GFLOPS.

We also measured the Real Time Factor (RTF) for Multi-band WaveRNN systems listed in Table [3| All the RTF values
were measured on a single Intel Xeon CPU E5-2680 v4 core. The results show that with quantization and avx2 speedup,
the RTF can be reduced from 1.337 to 0.387 for the baseline WaveRNN model. With the 4-band model, the RTF can be
further reduced to 0.171, which is 2x times faster than quantized WaveRNN model.

Table 3: Real Time Factor (RTF) evaluation of proposed Multiband WaveRNN.

RTF fullband 4band

float 1.337 0.503
int§  0.387 0.171

5.2.2 Quality

The Mean Opinion Scores (MOSs) of proposed multi-band WaveRNN were obtained through subjective listening
tests. The female dataset used in Sec. [5.1] was used for training both the DurlAN and WaveRNN models. Three
WaveRNN systems, the baseline WaveRNN model without quantization and the 4-band WaveRNN model with and
without quantization, were compared. Experimental results in Table. ] indicate that the three systems evaluated are
on-par with each other. No statistically significant difference was observed. If fact, most of the subjects participated in
the listening tests cannot feel any difference between utterances generated from these three different WaveRNN systems.
We can conclude that the proposed multi-band synthesis approach and the 8-bit quantization technique can effectively
reduce the computational cost without deteriorating the quality of the generated speech.

Table 4: 5-scale mean opinion score (MOS) evaluation of the proposed Multi-band WaveRNN.

Systems MOS

Fullband WaveRNN (float) 4.53
4-band WaveRNN (int8) 4.58
4-band WaveRNN (int8) 4.56

5.3 Style Control

In this experiment, we demonstrate the effectiveness of the proposed fine-grained style control approach for generating
speech with different style scales. The corpus we used for experiments contains male speech collected for game
commentary generation. It contains 4-hours of speech, of which 30-minutes of utterances are labeled with the exciting
style, 1-hour of utterances are labeled with the commentary style, and the rest are marked as normal. We generated
game commentary samples with different levels of excitement and a 5-minute video of real-time game commentary
speech with DurlAN and our proposed fine-grained style control approach. The audio samples and the demonstration
video can be found at https://tencent-ailab.github.io/durian.

5.4 Multi-modal Synthesis

In this experiment, we demonstrate the generation of synchronized speech and facial expression in 3D cartoon avatar
generation task. For modeling facial expression, 32 dimensional thw32b feature (face warehouse) were extracted
from the 3D individual-specific blendshape collected from real person during training. Among the 32 dimensional
fhw32b features, the first 25 dimensional features were extracted from the regression to the Principle Component
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Analysis(PCA) leading factors of face RGB features as described in [26]. And the last 7 dimensional features record
the 3D position of current facial expression. During the reconstruction process, the 3D avatar facial movement can be
reconstructed [27} 28] using the fhw32b 3D facial feature predicted using DurlAN model. The demos can be found at
https://tencent-ailab.github.io/durian.

6 Conclusions

In this paper, we presented a generic and flexible multimodal synthesis framework that is capable of generating highly
natural and robust speech and facial expression. Our experimental results indicate that the proposed DurlAN system
could synthesize speech with the naturalness and quality on par with the current state of the art end-to-end system
Tacotron 2, at the same time effectively avoid the word skipping and repeating errors in generated speech. We also
demonstrated a simple yet effective fine-grained style-control approach which controls not only the style but also the
scale of the style of the generated speech. We have further demonstrated that using the proposed multi-band waveRNN
we can speedup waveRNN inference time by at least two times over the already extensively optimized system without
deteriorating the quality of generated speech.
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Appendix
A Filter Design For Multiband WaveRNN

A stable yet more efficient low cost filter bank, called Pseudo Quadratue Mirror Filter Bank (Pseudo-QMF), is employed
for our multi-band processing. Pseudo-QMF is a type of cosine-modulated filter bank (CMFB) where all the filters are
cosine modulated version of a low-pass prototype filter. The prototype filter is designed to have a linear phase, leading
to a phase-distortion-free analysis/synthesis system. Due to the aliasing cancellation constraint of the desired filer bank,
the output aliasing is at the stopband attenuation level. As a result, by following the filter design in [29], a high stopband
attenuation property of analysis filter and synthesis filter can be achieved on an order of -100dB. Taking account of the
computational efficiency of the multi-band processing, we choose the finite impulse response (FIR) analysis/synthesis
filter order to of 63 for uniformly spaced 4-band implementations. It brings the stopband attenuation to the level of
-70dB. The filter order is significantly smaller compared to the 1536 samples for analysis and synthesis FIR prototype
filters realized in [30]. The frequency responses of 4-band uniform filter banks are plotted in Figure[5] The sampling
frequency of each subband waveform is f;/N Hz, where N is the number of filter channels/subbands and f; is the
desired sampling rate for the fullband signal. With the property of aliasing cancellation of Pseudo-QMTF, the critical
downsampling is applied after the fullband signal is decomposed into subbands by the analysis filterbank. In the future
work, we will consider to use infinite impulse response (IIR) filter banks for even lower computational cost.
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Figure 5: Frequency response of 4-band Pseudo-QMEF filter banks.
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